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INTRODUCTION 

PAST STUDIES on mixed convection in external flow have 
covered different geometries, such as vertical plates [l, 21, 
inclined plates [3, 41, and horizontal plates [5-IO]. Rama- 
chandran et al. [6] studied mixed convection over a hori- 
zontal plate under uniform wall temperature for the entire 
mixed convection regime, by analyzing the effect of buoyancy 
force on forced convection from one end and the effect of 
forced flow on free convection from the other end. Later, 
Raju et al. [8] employed a single mixed convection parameter, 
which varies from 0 for pure free convection to 1 for pure 
forced convection, to analyze the same problem. Very 
recently, Risbeck et al. [lo] re-examinecl the problem for 
power-law variation in the wall temperature by using a 
different single mixed convection parameter that also covers 
the entire mixed convection regime and varies from 0 to 1 
(from pure free convection to pure forced convection). The 
present note is an extension of the latter work [lo] to the 
power-law variation in surface heat flux, again using a single 
mixed convection parameter that covers the entire regime of 
mixed convection. Numerical results are presented for a 
range of Prandtl numbers under different levels of heating. 
Correlation equations for the local and average Nusselt num- 
bers are also given. 

ANALYSIS 

Consider laminar mixed convection flow over a semi-infi- 
nite horizontal flat plate with surface heat flux that varies as 
gw(x) = bx”, where b and M are real constants. The free 
stream temperature is r, and the free stream velocity parallel 
to the plate is u,. The x coordinate is measured from the 
leading edge of the plate and the y coordinate is measured 
normal to the plate. The velocity components in the x and y 
directions are u and v, respectively. Under the Boussinesq 
approximation, the governing boundary-layer equations for 
a constant-pro~~y fluid may be written as [S, IO] 

au au 
s+ay=O 

au au a m 
“x +“& = fBBa, I s (T-T,)dy+v$ (2) 

ar aT av uz+vdy= av. 

The corresponding boundary conditions are 

u=v=o, -kf$=qw(x)=bx” at y=O 

t/-+u,, T-+T, as y-,00. (4) 

The first term on the right-hand side of equation (2) is the 
buoyancy-induced streamwise pressure gradient, and the 

plus and minus signs refer, respectively, to flow above and 
below the plate: 

The system of equations (l)-(4) can be transformed into 
a dimensionless form by introducing the following non- 
dimensional quantities 

where II* is a nonsimilar mixed convection parameter, with 
Re, = u&v and Gr,* = g~q~(x)x4/(~vz) denoting, respec- 
tively, the local Reynolds and mod&d Grashof numbers, rl 
is a pseudo-similarity variable, f(x*, q) is the reduced stream 
function, and 0(x*, n) is the dimensionless temperature. The 
stream function $(x, y) satisfies the continuity equation with 
u = a$/ay and u = --&J/ax. It is noted here that the mixed 
convection parameter X* varies from 0 for pure free con- 
vection to 1 for pure forced convection. This transformation 
yields 

(8) 

G’fB = 0 (9) 

f’b*, 0) = 0, f’(x*, to) = 11** 

[3+(m+1)(1-x*)lf(x*,o) 

-(m+l)x*(l-~~~~(x*.o) = 0 

B’&*,O) = - 1, 9(x*, co) = 0, G{x*, co) = 0. (10) 

In equations (7)-(lo), the primes denote partial differ- 
entiation with respect to q, Fr is the Prandtl number, and 
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FIG. 1. Results for the local wall shear stress. ~,(.?/vp)[R~: ’ + Gr,* ““1 ‘. 
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FIG. 2. Results for the local Nusselt number, ~Vu,i(Re:'~+ Gr:'/6) 
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The plus/minus sign in front of the fourth term in equation 
(7) now stands for buoyancy ~sisting/opposing Aow. 

The physical quantities of interest include the axial velocity 
distribution, the temperature prolile 0(x*, s)/S(x*, 0) = 
(T-T&o,- 7’,), the local Nusselt number Nu, = hx/k 
(where h = qJ(T,- T,) is the local heat transfer coefficient, 
with qw = -~(~T/&J),,=,), and the local wall shear stress 
T% = ~(~~/~~~)~=*. In terms of the transfo~a~on variables, 
the expressions for u/u,, NM,, and z, can be written as 

nln, =f’(x*, rl)ix** (12) 

& 1 

Re’i*+Gr*“6 = Bm x x 

and 

Also of interest is the average Nusselt number iii;, = t’iL/k, 
where liis the average heat transfer coefficient over the plate 
length L. It has the expression 

where ReL, Grt, and xz are Rex, Gr:, and x* at x = L. 
The corresponding %& expression for ~2 = 0 (pure free 
convection with Re, = 0) can be found as 

and that for ~2 = 1 (pure forced convection with Gr,* = 0) 
has the form 

RESULTS AND DISCUSSION 

Equations (7)-(10) were solved by a weighted finite- 
difference method as described in ref. [lo]. Numerical results 
were obtained for buoyancy assisting Row covering 0.1 < 
Pr 6 IO0 and -0.4 < m < 1.0. This range of m values lies 
within the physical limits - 1 < m C 1 (see Gebhart [I 11). It 
is noted here that a step size of A? = 0.02 gave accurate 
results for 0.1 < Pr 6 7. However, a step size of A\rl = 0.01 
was required for Pr = 100. The value of rlrn ranged from 10 
to 20. The choice of a step size of Ax* = 0.05 was sufficient 
for all the cases considered. Results are presented for buoy- 
ancy assisting flows. 

The effects of Prandtl number Pr and the exponent value 
m on the velocity and temperature profiles are similar to 
those for the case of power-law wall temperature variation 
[lo] and, to conserve space, they are not illustrated. The local 
wall shear stress parameter r,(x2/v~)[Re~‘* + Gr:“6]-3 and 
the local Nusselt number parameter Nu,/[Rei” + Gr.: ““1 as 
a function of x* = Re:‘*/[Re:!‘+ Gr,+ ““] are shown, respec- 
tively, in Figs. 1 and 2 for values of the exponent m = -0.4, 
0, l/2, and 1, and Prandtl numbers of Pr = 0.1,0.7, 7.0, and 
100. Their numerical values are listed, respectively, in Tables 
1 and 2. As can be seen from the figures, for a given m, values 
for both the wall shear stress parameter and the Nusselt 

Table 1. Results for the local wall shear stress r,,(~~,/~v)(&!~* +Gr,*L’6)-3 =f”(x*, 0) 

Pr = 0.1 Pr = 0.7 

111 m 

x* -0.4 0 l/2 1 -0.4 0 l/2 1 

0 4.5812 4.3317 4.2109 4.1518 1.6605 1.5493 1.4961 1.4711 
0.1 3.3358 3.1537 3.0658 3.0228 1.2100 1.1285 1.0895 1.0712 
0.2 2.3312 2.2085 2.1460 2.1150 0.8495 0.7917 0.7638 0.7504 
0.3 1.5595 1.4719 1.4284 1.4061 0.5698 0.5304 0.5108 0.5012 
0.4 0.9766 0.9196 0.8897 0.8735 0.3621 0.3364 0.3232 0.3164 
0.5 0.5631 0.5276 0.5075 0.4959 0.2188 0.2034 0.1952 0.1909 
0.6 0.2972 0.2773 0.2654 0.2584 0.1379 0.1307 0.1269 0.1250 
0.7 0.1710 0.1641 0.1602 0.1581 0.1266 0.1254 0.1250 0.1249 
0.8 0.1756 0.1755 0.1756 0.1757 0.1718 0.1722 0.1726 0.1730 
0.9 0.2429 0.2433 0.2436 0.2438 0.2428 0.243 I 0.2434 0.2436 
1.0 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 

Pr = 7.0 Pr=lOO 

m m 

x* -0.4 0 l/2 1 -0.4 0 l/2 1 

0 0.5253 0.4815 0.4597 0.4493 0.1423 0.1289 0.1221 0.1187 
0.1 0.3835 0.3514 0.3355 0.3278 0.1041 0.0943 0.0894 0.0869 
0.2 0.2709 0.2483 0.2370 0.2316 0.0745 0.0677 0.0642 0.0625 
0.3 0.1849 0.1697 0.1620 0.1583 0.0535 0.0491 0.0468 0.0457 
0.4 0.1235 0.1140 0.1091 0.1067 0.0429 0.0404 0.0393 0.0387 
0.5 0.0877 0.0827 0.0802 0.0789 0.0484 0.0478 0.0477 0.0479 
0.6 0.0845 0.0832 0.0828 0.0827 0.0738 0.0742 0.0746 0.0750 
0.7 0.1165 0.1169 0.1173 0.1177 0.1152 0.1157 0.1163 0.1167 
0.8 0.1712 0.1717 0.1721 0.1725 0.1711 0.1716 0.1721 0.1724 
0.9 0.2427 0.243 1 0.2434 0.2436 0.2428 0.2431 0.2434 0.2436 
1.0 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 

- 
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Table 2. Results for the local Nusselt number Nu,/(ReJ” +Gr:““) = l/0(x*,0) 

Pr = 0.1 Pr = 0.7 
_ 

nz m 
x* -0.4 0 I #‘2 I -0.4 0 I,2 I 

---__ 

0 0.2577 0.3276 0.3898 0.4380 0.4216 0.5216 0.6099 0.6785 
0.1 0.2316 0.2944 0.3508 0.3936 0.3790 0.4670 0.5491 0.6100 
0.2 0.2059 0.2617 0.3120 0.3497 0.3377 0.4178 0.4894 0.5432 
0.3 0.1811 0.2300 0.2741 0.3071 0.2985 0.3693 0.4321 0.4799 
0.4 0.1577 0.2003 0.238 I 0.2671 0.2629 0.3256 0.3799 0.423 I 
0.5 0.1370 0.1741 0.2060 0.2322 0.2343 0.2910 0.3384 0.379 I 
0.6 0.1213 0.1547 0.1824 0.2070 0.2192 0.2744 0.3204 0.3605 
0.7 0.1156 0.1487 0.1768 0.2008 0.2281 0.2884 0.3406 0.3824 
0.8 0.1243 0.1611 0.1933 0.2187 0.2564 0.3248 0.3846 0.43 10 
0.9 0.1394 0.1806 0.2169 0.2451 0.2885 0.3652 0.4323 0.4842 
I.0 0.1550 0.2007 0.2410 0.2720 0.3209 0.4059 0.4803 0.5376 

Pr = 7.0 Pr = 100 

?H m 
Y,* -0.4 0 I,2 I -0.4 0 I:2 I 

0 0.6807 0.8244 0.9506 1.0488 1.1022 I .3245 1.5178 1.6704 
0.1 0.6124 0.7418 0.8565 0.9442 0.9933 1.1946 1.3709 I .5085 
0.2 0.5473 0.6638 0.7666 0.8460 0.8965 1.0817 I .2442 I .3724 
0.3 0.4885 0.5940 0.6856 0.7597 0.8256 I .0043 1.1586 I .2870 
0.4 0.4416 0.5402 0.6232 0.6950 0.8069 0.9963 I.1588 I .2972 
0.5 0.4179 0.5167 0.5996 0.6723 0.8776 1.1007 1.2948 I .4529 
0.6 0.4355 0.5457 0.6411 0.7188 I .0261 1.2918 1.5238 I .7082 
0.7 0.4933 0.6207 0.7321 0.8196 1.1966 I .5050 I .7745 I .9865 
0.8 0.5633 0.7082 0.8351 0.9340 1.3698 I .7206 2.0277 2.2674 
0.9 0.6344 0.7969 0.9393 1.0496 1.5432 I .9363 2.2811 2.5485 
I.0 0.7057 0.8856 I .0436 1.1653 I.7164 2.1519 2.5344 2.8294 

_. 

number parameter initially decrease as x* increases from 0 
until they reach a minimum value and thereafter increase as 
x* increases further to 1.0. The value of the local Nusselt 
number parameter, Fig. 2, is seen to increase with increasing 
IM for a given value of x*, with higher parameter values for 
larger Prandtl numbers, whereas the value of the local wall 
shear stress parameter, Fig. 1, decreases with increasing m 
for a given x*, with a lower parameter value for a larger 
Prandtl number. 

The behavior of the curves for the local wall shear stress 
parameter and the local Nusselt number parameter, as shown 
in Figs. 1 and 2, does not imply that the wall shear stress and 
the Nusselt number for mixed convection are lower than 
those predicted for pure forced convection or pure free con- 
vection. For example, consider the case of Pr = 0.7, m = 0, 
and x* = O.S. If the Reynolds number is taken as Re, = lOI 
the corresponding modified Grashof number is Gr: = IO’. 
From Tables I and 2 the local wall shear stress s,(x*/vj~) and 
the local Nusselt number NM, for the case of pure forced 
convection (x* = I, Re, = IO’, Grp = 0) are found to be 
10502 and 12.836, respectively. For the case of pure free 
convection (x* = 0, Gr: = 109, Re, = 0) they are, respec- 
tively, 48993 and 16.494. For mixed convection with 
x* = 0.5 (Re, = IO3 and Gr: = 109) their respective values 
are 51457 and 18.404. Thus, the predicted values of local 
wall shear stress and local Nusselt number for mixed con- 
vection are actually higher than the respective values pre- 
dicted for pure forced convection or pure free convection. 

The local Nusselt number Nu, can also be expressed in 
terms of Nu,Re; ‘I2 vs Gr,*Re;’ in a log-log scale. As shown 
in Fig. 3, the resulting curves asymptotically approach the 
straight line limits for pure forced convection 
(Gr:/Re; = 0) and pure free convection (Gr,*/Re,) --t co). 

Correlation equations for the local and average Nusselt 
numbers in forced convection over a flat plate for 

0.1 < Pr < 100 and -0.4 < m < 0.5 have been given by the 
expressions [ 121 

where 

Nu,.,Rr;“‘= a,[lt C’,] (18) 

C(~ = 0.464Pr’:‘[l +(O.O207/Pr) ‘I- I4 (19) 

V, =mj[0.44+5.0exp(--6.OPr’ ‘“)I-O.lSnli (20) 

and 

/VU~,~R~, “2 = 2c(, [I + Yl]. (21) 

For pure free convection the local and average Nusselt 
numbers for 0.1 < Pr ,< 100 and -0.4 < WI < 1 .O can be 
correlated by the following expressions 

Nu,,,Gr,*-’ ’ = a,[1 + Vu] (22) 

is taken from Armaly 41 al. [I31 and. from the present results, 
r/, is given by 

with 

VN = m/Al--m’/A2+m’/A3 (24) 

Al =9.120x IO- ‘In(Pr)+2.468, 

A2 = 1.800x lO~‘ln(Pr)+6.170. 

A3 = 3.370x IO -‘In(Pr)+17.37. (25) 

The corresponding average Nusselt number is expressed by 

6 
Nu,~,,,Gr:- “’ = ~---ccNII + V,J 

mf4 
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FIG. 3. Nu,Re; “* vs Gr,‘Re; 3 for mixed convection. 

Following Churchill [14], the correlation equation for 
Nusselt numbers in mixed convection can be expressed by 
the form 

(27) 

For the present study with a mixed convection parameter 
x*, the corresponding correlation equation for the mixed 
convection local Nusselt number can be represented by 

(Re:!‘y&‘,6) = ([;1*&)] 
+[(1-%‘)($$)~~. (28) 5. 

It was found that the maximum difference between the cor- 
related values from equation (28) and the calculated values 
is within 5% for E = 3. 

The correlation equation for the mixed convection average 
Nusselt number can be similarly represented by 

+[U-x3($)37’. (29) 

The maximum difference between the correlated values from 
equation (29) and the calculated values from equations (15)) 
(17) is found to be within 10% for E = 3. 
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1. Introduction 

TF~E KNOWLEDGE of the effective thermal conductivity of 
heterogeneous materials such as soils, ceramics, fiber 
reinforced materials and composites are becoming increas- 
ingly important in the technological developments and in 
many applications. Dependence of the effective thermal con- 
ductivity (ETC) of these materials on porosity, grain size 
and shape of the particles is also a matter of concern to 
engineers, architects and physicists. As it is not often possible 
to conduct experiments to study the effect of the above 
parameters on the ETC. a theoretical expression is needed 
to predict its value. 

Though a large number of models exist in the literature, a 
general expression which can predict 1, (ETC) of all kinds of 
two phase systems with the above parameters is still lacking. 

The present paper is an effort to find a suitable expression 
to predict the ETC of various kinds of two phase systems. 
We have taken the electrical analog of various parameters to 
develop the expression. Equivalent thermal resistors formed 
out of the phases in form of parallel slabs are considered and 
the resistor model approach has been applied. The slabs are 
taken to be inclined to the direction of heat flow. By varying 
the angle of the slabs, the E’K of different two phase 
materials can be predicted. The angle has been defined in 
terms of various structural and thermai parameters. 

2. THEORY 

On the basis of phase averaging of temperature field, the 
following closure equations can be written for a two phase 
system. According to Hadley [I). 

V(T) = ~<vr,j’+rl~9)(vr,j’ it) 

iZV(T) = m(vT,)‘+~‘(l-~,(vT,)~ (2) 
, I 

where (VT,)' and (VT?)’ are average of the gradients in 
continuous phase and dispersed phase, respectively. 4 is the 
porosity (volume fraction of continuous phase). These two 
equations contain three parameters V(T), (VT,)l. and 

(V72)2 and hence cannot be solved unless some relation 
connecting these parameters is assumed. 

One possibility is (VT,)’ = <VrZ)‘. i.e. average tem- 
perature gradients in the two phases are equal. This condition 
is met in a collection of phase slabs, parallel to the direction 
of heat flow. This equality when put in equations (1) and (2) 
gives 

i., = [@%, +(l -$)ii.%]. (3) 

This is an expression for equivalent thermal conductivity of 
resistors arranged in parallel. 

Similarly the assumption 

(VT,)’ = ;‘(V7‘, j’ 
I, 

when put in equations (I) and (2) gives. 

(4) 

It is an expression for equivalent thermal conductivity of 
resistors arranged perpendicular to the heat flow. The above 
condition is equivalent to n,(Vr,)’ = 12(VTZ)Z, i.e. the 
heat ttux passing through different phases is the same. It is a 
situation met with the slabs per~ndicular to the direction 
of heat flow. 

Any model for a two phase system, having the ETC depen- 
dent on 4 and a7:A, can be represented by a general equation. 

(VT,)’ = J-i- ?‘I -1) (VT?)2 [ j; ] , (5) 

where ,f’ is a parameter tying between 0 and I. 
Here i, and ii also represent upper and lower bounds of 

the effective thermal conductivity for a mixture. 
Thus i,, = (&),,,,, and d, = (i.c)m,n. 
We know that a porous medium is neither composed of 

slabs par&et to the heat flux nor perpendicular to it, yet the 
concept of the slabs is capable of predicting the maximum 
and minimum limits of the ETC. Therefore, it is proposed 
that the slabs of the continuous and dispersed phases, 
inclined to the heat flux may represent the ETC of the system. 


